Today's Lecture

Introduction to Water Treatment System

- Coagulation and Flocculation
- Sedimentation
- Filtration
- Disinfection

Water Treatment System

- Bring raw water up to drinking water quality
- Sources
 - Surface water
 - Groundwater

Groundwater	Surface water	
Low turbidity	Higher turbidity	
Low microbial contamination	Low microbial contamination	
May have hardness, metals, odors	Low hardeness	
May require softening	Easy access	
	Must be filtered	

Filtration

Objective:

Understand the main process in Water treatment plant

Coagulation and Flocculation

Coagulation and Flocculation

Introduction

Particles in Water

Organic	Inorganic	
Viruses	Clay	
Bacteria	Silts	
Algea	Mineral oxide	
Protozoan cyst and oocyst		
NOM		
(particulate and dissolved organic matter as humic acid)		

Introduction

□ Why we care ?

- Turbidity
 - How to measure??
 - **unit** is NTU,. or Nephelometric turbidity units
- Disease
- Disinfection by product formation
- Hardness
- Color

Properties and stability of particles

Particle size

Class	Size (m)	Settling velocity
Macromolecules	~10 ⁻⁹	3 m/10 ⁶ yr
Colloidal particles	~ 10 ⁻⁸ - 10 ⁻⁶	0.3 m/y
Silts	~ 4×10 ⁻⁶ - 6×10 ⁻⁵	9 m/d
Sand	~ 6×10 ⁻⁵ - 2×10 ⁻³	1-10 m/min

Note: Can you separate Colloidal and macromolecules by gravity?

Introduction

Removal Approach

- Large particles-
 - Settle rapidly with gravity
- Small particles
 - destabilize colloids so they aggregate
- □ Note:
- Particles suspension are thermodynamically unstable

Coagulation Vs Flocculation

Coagulation

- Addition of chemical coagulant or coagulants
- Particles destabilization
 - Reduction of electrical surface charge
- Less than 10 s

Flocculation:

- Particle aggregation (Sticking of destabilized particles)
- 20-45 min
- Floc separate by gravity

Coagulation practice-Inorganic Coagulant

Properties and stability of particles

Particle solvent interactions

- Surface charge
 - Isomorphous replacement

Coagulation

Coagulation mechanism

- Compression of the electrical double layer
- Adsorption and charge neutralization
- Adsorption and inter particle bridging
- Enmeshment in a precipitate (Sweep floc)

Coagulation practice-Inorganic Coagulant

Source: Amirtharajah, A. & Mills, K.M. 1982. Rapid-Mix Design for Mechanisms of Alum Coagulation. Jour. AWWA, 74:4:210.

Figure 1-2 Reaction schematics of coagulation.

Floculation Mechanism

Random collision Brownian motion
 Small particles < 0.1µm

- Laminar and Turbulent Shear
 - mixing
 - Due to velocity gradient
 - Particles > 1µm
 - Fluid shear-different particles travel at different speed
- Differential settling
 - Important for larger particles
 - Gravitational forces
 - Larger particles settle faster
 - Different particle sizes
 - Particles > 80µm

Coagulation-Flocculation

Over dose problems??

Coagulation-Flocculation

Practical Approach

- Jar Test
 - Chemical addition
 - Rapid mix
 - Slow mix

Measure

- ∎ pH
- Turbidity-suspended solid removal
- DOC- NOM removal-UV 254nm
- Residual dissolved coagulant concentration
- Sludge volume

Analyze

Optimum coagulant dose and pH

Coagulation practice-Inorganic coagulant

Inorganic Coagulant

- Alum
- Acidic-
- consume OH as they hydrolyze

$$Al_{2}(SO_{4})_{3} \leftrightarrow 2Al^{+3} + 3SO_{4}^{-2}$$
$$Al^{+3} + 6H_{2}O \leftrightarrow Al(H_{2}O)_{6}^{+3}$$

 $AI_{2}(SO_{4})_{3}.14 H_{2}O + 6HCO_{3} - \Leftrightarrow 2AI(OH)_{3}\downarrow + 6CO_{2} + 14H_{2}O + 3SO_{4}^{-2}$

Ferric chloride

$$FeCl_3 \leftrightarrow Fe^{+3} + 3Cl^{-1}$$

Jar Test- Alkalinity

QUIZ:

Determine the required alkalinity to treat natural water with flow of 3000 L/d with 60 mg/L Alum? Weight of alkalinity per day?

 $AI_{2}(SO_{4})_{3}.14 H_{2}O + 6HCO_{3} \Rightarrow 2AI(OH)_{3}\downarrow + 6CO_{2} + 14H_{2}O + 3SO_{4}^{-2}$

Jar Test- Alkalinity

Example:

Determine the required alkalinity to treat natural water with flow of 3000 L/d with 60 mg/L Alum? Weight of alkalinity per day?

 $AI_{2}(SO_{4})_{3}.14 H_{2}O + 6HCO_{3} \Rightarrow 2AI(OH)_{3}\downarrow + 6CO_{2} + 14H_{2}O + 3SO_{4}^{-2}$

Alkalinity-Coagulation Relationships

Addition metallic salts release Hydrogen ions

- Hydrogen ions neutralize alkalinity
- 1mg/L alum neutralize 0.5 mg/L alkalinity
- Low alkalinity must be buffered to maintain coagulation
 - lime $Ca(OH)_2$ or soda ash (Na_2CO_3)

Coagulation-Flocculation

For effective treatment must add

- Lime
- Sodium carbonate

Coagulation Practice

Quiz 2: High turbidity- low alkalinity

- coagulant dosage
 - a. High
 - b. small
- Mechanism
 - a. Adsorption and charge neutralization
 - b. Sweep floc
- pH
 - a. affected
 - b. unaffected

Coagulation Practice-Example

Quiz 3: High turbidity- high alkalinity

- coagulant dosage
 - a. High
 - b. small
- Mechanism
 - a. Adsorption and charge neutralization
 - b. Sweep floc
- pH
 - a. affected
 - b. unaffected

Coagulation Practice-Example

Quiz 4: Low turbidity- High alkalinity

- coagulant dosage
 - a. High
 - b. small
- Mechanism
 - a. Adsorption and charge neutralization
 - b. Sweep floc
- pH
 - a. affected
 - b. unaffected

Coagulation Practice-Example

Quiz 5: Low turbidity- low alkalinity

- coagulant dosage
 - a. High
 - b. small
- Mechanism
 - a. Adsorption and charge neutralization
 - b. Sweep floc
- pH
 - a. affected
 - b. unaffected

Sedimentation

Filtration

Remove fine suspended particles by passing through porous media

Common materials for granular bed filters:

- sand
- anthracite coal
- garnet (silicates of Fe, Al, and Ca)

Filtration

Properties of granular material used in water filters

Parameter	Silica sand	Anthracite	Garnet
Grain diameter	0.45-0.55	0.9-1.1	0.2-0.3
Grain density	2.65	1.45-1.73	3.6-4.2
Sphericity	0.7-0.8	0.46-0.6	0.6
Porosity	0.42-0.47	0.56-0.6	0.45-0.55

Filtration

Rapid sand filters(most common)

- Sieved sand on top of bed of gravel
- Particles removed throughout depth of filter as collide with filter particles and stick small particles may be removed
- Pretreatment to destabilize particles is essential

Slow sand filters

- Low filtration rate with the use of smaller sand
- Filter sand is less uniform
- Particles are removed on the surface of the filter(forming a mat of materials , called schmultzdecke)
- Schmultzdecke forms a complex of biological community that degrade some organic compounds.
- Pretreatment is not important

Type of filtration

How filter operates

- Open valve A
- Open Valve C
- All other valves are closed

Filter cleaning

- □ How filter is Backwashed
 - Open valve D
 - Open valve B
 - Close valves A and C
- Reverse direction of flow of water through the filter. Increase velocity until filter media particles become fluidized (suspended in flow).
 Particles bump against each other knocking the "dirt" off of them.
- □ When?
 - Head loss reaches the limit
 (typically 2.4 to 3.0 m)
 - Below effluent acceptable level

Filtration

The dual media filter

- The ideal, down flow filter would have larger diameter media near the top and smaller diameter media near the bottom.
- This would encourage depth filtration, and make use of the entire bed.
- After backwash, however, the larger particles settle faster.
- A dual media filter circumvents this problem
 - Low density, large diameter anthracite particles are near the top.
 - Higher density, lower diameter sand is near the bottom.

Filtration

Mechanism in Rapid sand filter

- Straining
- Interception
- Settling
- Brownian motion
- Hard to quantify (empirical)Required destabilized colloids

Filtration Design

Key Elements

- Hydraulics
- Particle capture mechanism

Parameters to be measure during operation
 The head loss across the filter
 The turbidity of the effluent

Filter hydraulic-Fluid flow in porous media-Darcy

Head Loss: In filter-porous medium- lots of contact between water and the rough sand grains leads to significant pressure loss (head loss)

Darcy's law (1856)-flow through granular media

Reynolds number less than one

$$v = k \frac{dh}{dL} \qquad K = Hydraulic \quad conductivity \, velociy \quad unit$$

$$v = Dary's \qquad velocity$$

$$dh/dl = \qquad \text{Rate of change of pressure head with distance}$$

Filter hydraulic

No mathematical descriptive of the porous material

Filter hydraulic

Carman-Kozeny

$$\frac{h}{L} = \frac{k_k \mu (1-\varepsilon)^2 S^2 \nu}{\rho_w g \varepsilon^3}$$

valid
$$N_R < 6$$
 $N_R = \frac{d_p * Q / A_s * \rho}{\mu}$

where:

h = head loss

L= filter bed length

k = Kozeny coefficient, unitless≈5

v = superficial velocity (Q/A_s)

 ρ = fluid density

 μ = fluid viscosity

S= specific surface area of the filter grain (surface area per volume), 1/m

 $\epsilon\text{=}\mathsf{Filter}$ Porosity, dimensionless

A_s =horizontal surface area

For uniform granular material

$$S = \frac{6}{\psi d}$$

Quiz:

A water treatment plant is being designed to supply 1m³/s of water for the nearby community. If sand filter is used, calculate the minimum surface area of the filter necessary to provide treated water at this rate

Head loss =1mLength of the filter= 0.75 mSand Sphericity $\Psi = 0.8$ Porocity $\varepsilon = 0.4$ $\rho = 998 \text{ g/m}^3$ $\mu = 0.01 \text{ g/cm/s}$ K=5Sand grain diameter=0.5mm

Example

Disinfection

Coagulation mechanism

Adsorption and inter particle bridging

- Polymer adsorbs to several different colloids bridging them together
- Occur in conjunction with charge neutralization
- Higher molecular weight

□ Reaction mechanism for polymer:

Coagulation mechanism

Reaction mechanism for polymer

Coagulation practice-Inorganic Coagulant

Inorganic Coagulant

Aquo Al ion

Mononuclear species

Polynuclear species

Precipitate

Aluminate ion

 $Al(H_{2}O)_{6}^{+3}$ $\uparrow \rightarrow H^+$ $Al(OH)(H_2O)_5^{+2}$ $\uparrow \rightarrow H^+$ $Al_{3}O_{4}(OH)_{24}^{+7}$ $\uparrow \rightarrow H^+$ $Al(OH)_{3(s)}$ $\uparrow \rightarrow H^+$ $Al(OH)_{4}^{-}$

Electrical double layer

